Substitution of the Methyl Groups with Ethyl groups at C-10 and C-15 of 2,3-Oxidosqualene halts the Enzymatic Reaction of Oxidosqualene-Lanosterol Cyclase at the Monocyclic Ring Stage

Tsutomu Hoshino,*a Eiichi Ishibashia and Kimiyoshi Kaneko ${ }^{\text {b }}$
a Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950-21, Japan
${ }^{\text {b }}$ Niigata College of Pharmacy, Kamishinei-chou, Niigata 950-21, Japan

Incubation of the substrate analogue, (3S)-(E,E,E,E,E)-10,15-diethyl-2,6,19,23-tetramethyl-2,3-epoxytetracosa-$6,10,14,18,22$-pentaene (-)-1, with 2,3-oxidosqualene-lanosterol cyclase from pigs liver gave unprecedented cyclization products $\mathbf{2}$ and $\mathbf{3}$ having a monocyclic skeleton.

Numerous studies on the reaction of 2,3-oxidosqualenelanosterol cyclase with different substrates have been reported. ${ }^{1}$ Among many investigations, special attention has been drawn by Tamelen, ${ }^{2}$ Corey ${ }^{3}$ and Kyler ${ }^{4}$ to how the cyclization pathway is affected by the substitution of the methyl groups at $\mathrm{C}-10$ or at $\mathrm{C}-15$. The replacement of hydrogen at $\mathrm{C}-15^{2}$ or of the vinyl group at $\mathrm{C}-10^{4}$ led to the normal cyclization products, however the substrate analogue lacking methyl groups at both C-10 and C -15 gave an unusual cyclization product. ${ }^{3}$ To gain more insight into the molecular recognition, we carried out the enzymic reaction on the substrate 1 , whose structure has two ethyl groups (slightly bulky substituents) at C-10 and C-15 in the squalene backbone. Here we report the unprecedented enzymic reaction where the polycyclization is terminated at the monocyclic stage.

The synthetic methodology of (\pm)-1 was essentially the same as that of oxidosqualene previously described ${ }^{5}$ except that methyl 3 -keto-valerate was the starting material. Microsome pellets from pigs liver ${ }^{6,7}$ and Baker's yeast ${ }^{8,9}$ were used as enzyme sources. Compound (\pm)-1 \dagger was anaerobically incubated at optimal $\mathrm{pH}^{5,7}$ with the partially purified enzymes at $37^{\circ} \mathrm{C}$ for $24-30 \mathrm{~h}$. The product was analysed by GC. No conversion was observed with yeast cyclase, whereas two new peaks were found with pig liver cyclase. Large-scale incubation of $(\pm)-1(40 \mathrm{mg})$ with the liver cyclase afforded $2(4 \mathrm{mg})$ and 3 (5 mg) as oils, 45% conversion based on one enantiomer of $(\pm)-\mathbf{1}$, after purification with SiO_{2} column chromatography

(\pm)-1

$(-)-2$

$(+)-3 \mathrm{R}=\mathrm{Me}$
Achilleol A R $=\mathrm{H}$
(hexane-EtOAc as eluent), $[\alpha]_{\mathrm{D}}^{25}(\mathrm{EtOH})+6.25^{\circ}(c=0.21)$ and $-6.1^{\circ}(c=0.36)$, respectively. The substrate 1 recovered after repetitive incubation showed an $[\alpha]_{\mathrm{D}}^{25}+1.6^{\circ}(c=0.68, \mathrm{EtOH})$, verifying the fact that the $3 S$-substrate, (-)-1, was selectively converted to the new products as well as being naturally converted from $3 S(-)$-2,3-oxidosqualene to lanosterol. ${ }^{10}$ From Lineweaver-Burk plots, the K_{m} values of $(-) \mathbf{1}$ were determined to be ca. $250 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}$ for each production of 2 and 3, while that of (- -)-oxidosqualene was $50 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}, 7$ indicating that the enzyme affinity of $\mathbf{1}$ was 2,3 -times less. Compounds $\mathbf{2}$ and 3 were not produced in the presence of a specific inhibitor against mammalian cyclase of N-nonanoyl- 8 -aza- $4 \alpha, 10$-dime-thyl-trans-decal- 3β-ol, 7,11 indicating that these conversions were only catalysed by the cyclase enzyme. The inhibitory effect of 1 on the conversion from oxidosqualene to lanosterol was small ($\mathrm{IC}_{50},>4000 \mu \mathrm{~mol} \mathrm{dm}{ }^{-3}$ for baker's yeast and >420 $\mu \mathrm{mol} \mathrm{dm}^{-3}$ for Pig liver cyclase).
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in acetone- $\left[{ }^{2} \mathrm{H}_{6}\right]$ showed four olefinic protons at $5.0-5.2(\mathrm{~m})(1$ had five), the absence of the oxide ring proton ($2.63,1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}$) (originally present for 1) and the presence of new signals at 3.24 ($1 \mathrm{H}, \mathrm{m}, 3$-Hax) and $3.40(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, 3-\mathrm{OH})$. The presence of $>\mathrm{CH}-\mathrm{OH}$ [$\delta_{\mathrm{C}} 78.3$ (d)] indicated that cyclization had occurred. From EIHRMS, the molecular formula was determined to be $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{2}$ ($\mathrm{M}^{+} m / z 472.4259$, requires 472.4280). The other oxygen atom to be identified in 2 was that of the tertiary hydroxy group [δ_{H} $\left.2.94(1 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 73.2(\mathrm{~s})\right]$. In addition, the proton resonances of the three methyl groups [$\delta_{\mathrm{H}} 1.64(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 1.21(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H})$ and $1.23(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})]$ in the spectrum of 1 shifted to δ_{H} $1.13,1.02$ and 0.78 (each $3 \mathrm{H}, \mathrm{s}, 27-\mathrm{H}, 25-\mathrm{H}$ and $26-\mathrm{H}$, respectively). Other methyl groups were left unchanged. These upfield chemical shifts further suggest that 1 lost one double bond to form a cyclized skeleton and 2 possessed dimethyl groups on C-4 of the cyclohexane ring. The detailed analyses of the HMBC spectrum, especially the hydroxy protons (e.g. cross peaks of $27 \mathrm{CH}_{3} / 6 \mathrm{OH}$ and $4 \mathrm{C} / 30 \mathrm{H}$), revealed the positions of attachment of both the tertiary and secondary hydroxy groups mentioned above. The NOESY spectrum clarified the relative stereochemistry of 2. The molecular composition of $\mathbf{3}$ was determined to be $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}$ from CIMS $\left(\mathrm{CH}_{4}, m / z \mathrm{M}^{+}+\mathrm{H}, 455\right)$ and EI-HRMS ($\mathrm{m} / \mathrm{z} \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 436.4083$; requires 436.4069). A comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 in CDCl_{3} with that of 1 showed seven and eight methyl groups for $\mathbf{3}$ and $\mathbf{1}$ respectively, and two new singlets at $\delta_{\mathrm{H}} 4.58(1 \mathrm{H}, \mathrm{s}, 27-\mathrm{H})$ and $4.85(1 \mathrm{H}, \mathrm{s}, 27-\mathrm{H})$, both correlated to $\delta_{\mathrm{C}} 108.3(\mathrm{~d})$ in the HMQC spectrum, indicating the presence of an exomethylene group in 3, which originated from the lost methyl group described above. As well as compound 2, $\mathbf{3}$ was also cyclized, because four olefinic protons at $\delta_{\mathrm{H}} 5.0-5.2(\mathrm{~m})$ and a new signal at $\delta_{\mathrm{H}} 3.39$ [1 $\mathrm{H}, \mathrm{dd}, J=10.0 \mathrm{~Hz}, 4.1,3$-Hax, correlated to $\delta_{\mathrm{C}} 77.2(\mathrm{~d})$] were observed; coupling constants of the latter signal showed an equatorial disposition for the hydroxy group. From HMBC and NOESY spectra, the structure of $\mathbf{3}$ was unequivocally determined.
The monocyclic carbocation, generated at C-6 by the first cyclization, reacted with a water molecule acting as a
nucleophile to produce 2 . The loss of a proton from the methyl group on C-6 generated the exomethylene of 3 . The formation of compounds 2 and $\mathbf{3}$ would occur if the ethyl residues lacked molecular recognition towards the methyl-binding sites of the enzyme, with which the methyl groups at C-10 and C-15 of the substrate strongly interact to give a folding boat-chair conformation, participating in the subsequent second and third cyclizations. The finding of Achilleol A, ${ }^{12}$ an analogue of 3 ($\mathrm{R}=\mathrm{H}$), from Achillea odorata suggests that the plant's cyclase may lack the amino acid-alignments, which, though not yet known, are probably responsible for the methyl-binding sites. There are some indications that the methyl group at $\mathrm{C}-10$ is crucial to the correct folding, ${ }^{3}$ and that the structural modifications at the β-face regions of the folded conformation alter the cyclization pathway. ${ }^{4,13}$
Received, 25th August 1995; Com. 5/05642J

Footnote

\dagger Satisfactory ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HR-EIMS spectra were obtained for compound 1.

References

1 I. Abe, M. Rohmer and G. D. Prestwich, Chem. Rev., 1993, 93, 2189. 2 E. E. van Tamelen, J. Am. Chem. Soc., 1968, 90, 3284.
3 E. J. Corey, S. C. Virgil, D. R. Liu and S. Sarshar, J. Am. Chem. Soc., 1992, 114, 1524
4 J. C. Medina, R. Guajardo and K. Kyker, J. Am. Chem. Soc., 1989, 111, 2310.

5 T. Hoshino, H. J. Williams, K. Shishido and A. I. Scott, J. Labelled Compd. Radiopharm., 1990, 28, 1285.
6 I. Abe, M. Bai, X-y Xiao and G. D. Prestwich, Biochem. Biophys. Res. Commun., 1992, 187, 32.
7 T. Hoshino, N. Kobayashi, E. Ishibashi and S. Hashimoto, Biosci. Biotech. Biochem., 1995, 59, 602.
8 T. Hoshino, H. J. Williams, Y. Chung and A. I. Scott, Tetrahedron, 1991, 47, 5925.
9 J. Bujons, R. Guajardo and K. S. Kyler, J. Am. Chem. Soc., 1988, 110, 604.

10 Y. Yamada, C. Seo and H. Okada, Agric. Biol. Chem., 1981, 45, 1741.

11 M. W. Wannamaker, P. P. Waid, W. A. Van Sickle, J. R. McCarthy, P. K. Wilson, G. L. Schatsman and W. R. Moore, J. Med. Chem., 1992, 35, 3581.
12 A. F. Barrero, E. J. Alvarez-Manzaneda R. and R. Alvarez-Manzaneda, Tetrahedron Lett., 1989, 30, 3351.
13 J. C. Medina and K. S. Kyler, J. Am. Chem. Soc., 1988, 110, 4818.

